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•• The atmosphere has coupled instabilities that span The atmosphere has coupled instabilities that span 
many scales, from ENSO tomany scales, from ENSO to brownianbrownian motion:motion:

• ENSO has a doubling time of about one month
• Baroclinic weather waves – 2 days doubling time
• Mesoscale phenomena – a few hours
• Cumulus convection – 10 minutes
• Brownian motion – …
• Linear approaches, like Lyapunov and Singular Vectors 

can only  handle the fastest growing instability present in 
the model, nonlinear integrations allow fast instabilities 
to saturate

• This has major implications for ensemble forecasting and 
data assimilation…



• A good ensemble should contain the relevant unstable 
perturbations: For example, an ensemble for seasonal 
prediction should have initial perturbations that contain 
coupled instabilities.
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To help understand the problem in coupled systems, test 
breeding, simply running the nonlinear model a second 
time, from perturbed initial conditions. The results should 
be valid for EnKF and other nonlinear approaches.
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In coupled systems nonlinear saturation allows filtering 
unwanted fast, small amplitude, growing instabilities like 
convection (Toth and Kalnay, 1993)
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This was also noted by Aurell et al (1996, 1997) who defined a Finite 
Size Lyapunov Exponent (FSLE):
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The FSLE is clearly related to the Average Bred Growth Rate
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ABGR is easier to compute than FSLE, but they both converge to the 
Lyapunov exponent for infinitesimal amplitudes and intervals

Boffetta et al (1998) used a coupled fast/slow Lorenz model to show 
that the predictability is a function of the 
tolerance ∆, and for small amplitude
fast modes, predictability is larger than 
the Lyapunov estimation 
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In the case of coupled ocean-atmosphere modes, we cannot 
take advantage of the small amplitude of the “weather noise”! 
We can only use the fact that the coupled ocean modes are slower…
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Test with a simple model: 
Lorenz (1963) 3-variable model

it has two regimes, and the transition between them is chaotic
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In the 3-variable Lorenz (1963) model we used breeding
to estimate the local growth of perturbations:

Bred Vector Growth: red, high growth; yellow, 
medium; green, low growth; blue, decay

With just a single breeding cycle, we can estimate 
the stability of the attractor (Evans et al, 2003)



Rules for a forecaster living in the Lorenz attractor (Evans et 
al, 2003)

BV Growth

over 8 steps:

* BVG>1.8

* BVG>1.1

*BVG>1.0

•BVG<1.0

“Warm”

“Cold”

1) Regime change:The presence of red stars indicates that 
the next orbit will be the last one in the present regime. 
2) Regime duration: One or two red stars, next regime will be short. 
Several red stars: the next regime will be long lasting. 



The two rules are very robust, with threat scores >90%

Occasional false alarm Occasional missed regime change



Breeding in a coupled system 

• Breeding: finite-amplitude, finite-time 
instabilities of the system (~Lyapunov 
vectors)

• In a coupled system there are fast and slow 
modes, and a linear Lyapunov approach 
will only capture fast modes. 

• Can we do breeding of the slow modes?



We coupled a slow and a fast Lorenz (1963) 
3-variable model (Pena and Kalnay, 2003)
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We consider three representative cases:
a) “Weather waves coupled with convection” in which 
the fast waves are 10 times smaller and 10 times faster, 
and the coupling is weak:

1 20.1, 0.1, 0.15S C Cτ = = = =
b) “ENSO coupled ocean-atmosphere” in which 
the fast waves have the same space scale, but are
10 times faster. We also used stronger coupling:

1 20.1; 1.0; 1.0 ; 11S C C Oτ = = = = = −

c) “Tropical-extratropical” system in which 
the ENSO tropical atmosphere is weakly coupled to
a fast extratropical “atmosphere”  (triply-coupled)



First consider the rms ensemble distances of several coupled systems
Weather wave with convection

Extratropical ocean-atm 2

Extratropical ocean-atm 1

ENSO



x-component of the three coupled systems

Weather waves with convection ENSO ENSO coupled to an 
extratropical atmosphere

• We will use the amplitude and rescaling interval of breeding to 
try to separate fast and slow modes

•Compare results with those obtained using Lyapunov vectors 
and Singular Vectors (with the same optimization interval)



“Weather waves with convection”: we can get either the BVs for fast
“convection”or slow “weather waves”, depending on the rescaling
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“ENSO” strongly coupled system: almost slave atmosphere

“slow ocean” “fast atmosphere”



For the ENSO system we can get the BVs for slow “coupled tropics” 
or the fast “atmosphere” (almost a “slave”)
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Triply coupled system: extratropical atmosphere - ENSO
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Results from Lorenz coupled models

• Coupling a fast and a slow Lorenz model, we can do 
breeding of the slow modes

• Valid for other nonlinear approaches (e.g., EnKF) but 
not of linear apporaches (e.g., LVs and SVs) which are 
dominated by the fastest component

• Can be applied to the ENSO coupled instabilities (Cai, 
Kalnay and Toth, 2002, for the Zebiak-Cane model)

• We have also had promising results with the NASA 
NSIPP coupled ocean-atmosphere GCM (Yang, Cai and 
Kalnay, 2003)



In the NASA coupled GCM, there are also equatorial unstable 
waves in the equatorial cold tongue (color). The bred vectors 
(contours) give the most unstable perturbations. This provides a
powerful tool for a dynamical analysis. (Yang et al, 2003)



Experiments with coupled systems

1. Zebiak-Cane model (Cai et al, 2002, J of Cl): 
– We found the instabilities of the ENSO evolution, 

and their dependence on the annual cycle and the 
ENSO phase

– We tested the impact of bred vector ensembles and of 
minimizing the projection on bred vectors in the 
initial conditions

2. NSIPP coupled GCM
– We performed two independent breeding experiments
– Encouraging results suggest we can isolate the ENSO 

instabilities
3. Breeding with the NSIPP operational system

– Underway
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Forecast Error Growth

Error 
doubling

Error 
tripling

“Spring Barrier”: The “dip” in the error growth chart indicates a large error growth for 
the forecast that begins in the spring and passes through the summer. Removing the 
projection of the composite BV from the initial conditions (one d.o.f.) wipes it out.



Breeding with the NSIPP 
coupled GCM

• As in the Lorenz coupled system, we rescale using 
a slow variable (Nino 3 SST) and an interval long 
compared to the “weather noise” (one month)

• We performed two independent breeding cycles
• Regressed against their own Nino-3 SST index.
• Performed correlation matrix EOFs, very similar 

to the regression wrt Nino-3 index
• Results are extremely robust, and almost identical 

for BV1 and BV2, computed independently.



Regression maps with BV NINO3 index
• oceanic variables



Regression maps with BV NINO3 index
• atmospheric variables



Background ENSO vs. ENSO “embryo”

CNT EOF1 BV1 EOF1 BV2 EOF1

CNT EOF2 BV1 EOF2 BV2 EOF2



Evolution of the control SST (color) and the BV SST 
(contours) between  months t=45 and t=57



Summary about breeding in a coupled systemSummary about breeding in a coupled system
• Breeding is a simple, finite-time, finite-amplitude 

generalization of Lyapunov vectors: just run the model 
twice…

• The only free parameters are the amplitude and 
frequency of renormalization (does not depend on the 
norm)

• Breeding on the Lorenz (1963) model yields very 
robust prediction rules for regime change and duration

• In a coupled models, it is possible to isolate the fast and 
the slow modes by a physically based choice of the 
amplitude and frequency of the normalization.



Tentative conclusions about data Tentative conclusions about data 
assimilation in coupled systems with assimilation in coupled systems with 

multiple time scalesmultiple time scales

• In a system with instabilities with multiple time scales, 
methods that depend on linearization to get the “errors of 
the day” such as 4D-Var and KF may not work.

• The results using breeding suggest that a coupled 
Ensemble Kalman Filter could be designed for data 
assimilation using long time steps
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